Skip to main content

Why to teach machine?

To reduce the human efforts!

Let's find out! 

In today's fast and competitive world we all want quick, fast and financial feasible results! Teaching and learning has a great contribution in the development of today's world! 

Making machine learn the way human does is known as Machine Learning and it' s a subset of AI. 

In ML we replace traditional program writing for each machines by making machines learn program by themselves! Isn't it cool! 


So, by teaching machines to learn program by themselves will reduce the human efforts and which will leads to create more opportunities for the world! 

Comments

Popular posts from this blog

Face Detection and Recognition Model

 Let's begin! The base model for Face Detection and Recognition.  It uses face recognition library, which has face encodings to detect and recognize different faces. I've created a class where we can initialize it with the image path and label which save it's encoding then from predict function we check whether the encodings is same or not! If the encodings is same we return the image with label name. Else we return the image with default label Unknown .

Face Detection and Recognition API

 Let's begin! Face Detection and Recognition API.  I've used the same  model  as discussed in previous blog and used FastAPI framework to create the API and Uvicorn for the server to run it on Google Colab.  The API has four request: Index (GET) : Homepage of API Upload (POST) : User can upload the image and label to be used as dataset. Target (POST) : Target image on which prediction has to be done.  Prediction (GET) : Get the prediction. The purpose of this project was to understand the creation of a ML API and how to use it and it's use is restricted for educational purpose only.

Predicting Chances of being infected by COVID-19 with a Basic ML Model

 Let's begin! COVID-19 has really affected our life! Even the President of U.S.A. and the first lady has been tested as positive. So, our first model will be dedicated on the prediction on the chances of whom are more likely to fall for the virus!